Chris Huntingford’s research papers

Publication list and some extra comments


Papers are given below and with their doi or urls links

I am based at the UK Centre for ecology and hydrology

Benson Lane, Wallingford, OXON, OX10 8BB, U.K.

2025 papers

2024 papers

  • Future increases in soil moisture drought frequency at UK monitoring sites: merging the JULES land model with observations and convection-permitting UK climate projections, Szczykulska, M. et al., Environmental Research Letters, 19, 104024 (2024), https://doi.org/10.1088/1748-9326/ad7045 
  • Potential thermal safety margin for plant photosynthesis derived from local temperature variability, Kumarathunge, D.P., Jiang, M. and Huntingford, C., Ecological Modelling, 496, 110832 (2024), https://doi.org/10.1016/j.ecolmodel.2024.110832
  • Little evidence of hysteresis in regional precipitation, when indexed by global temperature rise and fall in an overshoot climate simulation, Walton, J. and Huntingford, C., Environmental Research Letters, 19, 084028 (2024), https://doi.org/10.1088/1748-9326/ad60de
  • Testing the assumptions in emergent constraints: why does the “emergent constraint on equilibrium climate sensitivity from global temperature variability” work for CMIP5 and not CMIP6?, Williamson, M. et al., Earth System Dynamics, 15, 829-852 (2024), https://doi.org/10.5194/esd-15-829-2024
  • Increased crossing of thermal stress thresholds of vegetation under global warming, Li, X. et al., Global Change Biology, 30, e17406 (2024), https://doi.org/10.1111/gcb.17406
  • Optimal approaches for COVID-19 control: the use of vaccines and lockdowns across societal groups, Bonsall, M.B. et al., Frontiers in Epidemiology, 4, 1308974 (2024), https://doi.org/10.3389/fepid.2024.1308974
  • A framework for improved predictions of the climate impacts on potential yields of UK winter wheat and its applicability to other UK crops, Hayman, G et al, Climate Services, 34, 100479 (2024), https://doi.org/10.1016/j.cliser.2024.100479
  • Acceleration of daily land temperature extremes and correlations with surface energy fluxes, Huntingford, C et al, npj Climate and Atmospheric Science, 7, Art. Num. 84 (2024), https://doi.org/10.1038/s41612-024-00626-0 
  • Vegetation greenness in 2023, Li, X. et al., Nature Reviews Earth & Environment, 5, 241-243 (2024), https://doi.org/10.1038/s43017-024-00543-z 
  • Integrating ecosystem water demands into drought monitoring and assessment under climate change, Cui, J. et al., Nature Water, 2, 215-218 (2024), https://doi.org/10.1038/s44221-024-00217-6

2023 papers

  • .CHESS-SCAPE: high-resolution future projections of multiple climate scenarios for the United Kingdom derived from downscaled United Kingdom Climate Projections 2018 regional climate model output, Robinson, E.L. et al., Earth System Science Data, 15, 5371-5401 (2023), https://doi.org/essd-15-5371-2023
  • Committed global warming risks triggered multiple climate tipping points, Abrams, J.F., Huntingford, C. et al, Earth’s Future, 11e2022EF003250,(2023), https://doi.org/10.1029/2022EF003250
  • Potential impacts of rapidly changing european use of fossil fuels on global warming, Huntingford et al., 5091002 Environmental Research Communications, (2023), https://doi.org/10.1088/2515-7620/acf3d7
  • CO2 fertilization contributed more than half of the observed forest biomass increase in northern extra-tropical land, He, Y. et al., Global Change Biology, (2023), https://doi.org/10.1111/gcb.16806 
  • Autumn canopy senescence has slowed down with global warming since the 1980s in the Northern Hemisphere, Zhang, Y. et al., Communications Earth & Environment, 4, 173 (2023), https://doi.org/10.1038/s43247-023-00835-0  
  • Emergent constraints for the climate system as effective parameters of bulk differential equations, Huntingford, C. et al., Earth System Dynamics,  433-442 (2023), https://doi.org/10.5194/esd-14-433-2023
  • Global variations in critical drought thresholds that impact vegetation, Li, X et al., National Science Review, (2023), https://doi.org/10.1093/nsr/nwad049
  • Drivers and impacts of Eastern African rainfall variability. Palmer, P.I. et al., Nature Reviews Earth & Environment, (2023), https://doi.org/10.1038/s43017-023-00397-x
  • Seeking more robust early warning signals for climate tipping points: the ratio of spectra method (ROSA). Clarke, J. ., Huntingford, C., Ritchie, P.D.L. and Cox, P.M., 18, Art Num: 035006, Environmental Research Letters, (2023), https://doi.org/10.1088/1748-9326/acbc8d
  • The detection and attribution of extreme reductions in vegetation growth across the global land surface. Yang, Y., Munson, S.M., Huntingford, C. et al, Global Change Biology, (2023), https://doi.org/10.111/gcb.16595
  • A new precipitation emulator (PREMU v1.0) for lower-complexity models. Liu, G., Peng, S., Huntingford, C. and Xi, Y, Geoscientific Model Development, (2023), https://doi.org/10.5194/gmd-16-1277-2023

2022 papers

  • Global water availability boosted by vegetation-driven changes in atmospheric moisture transport. Cui, J., Lian, X., Huntingford, C., Gimeno, L., Wang, T., Ding, J., He, M., Xu, H., Chen, A., Gentine, P. and Piao, S., Nature Geoscience, (2022), https://doi.org/10.1038/s41561-022-01061-7
  • Resilience of UK crop yields to compound climate change. Slater, L.J., Huntingford, C., Pywell, R.F., Redhead, J.W. and Kendon, E.J., Earth System Dynamics, 13 1377-1396 (2022), https://doi.org/10.5194/esd-13-1377-2022
  • Increases in the temperature seasonal cycle indicate long-term drying trends in Amazonia. Ritchie, P.D.L. et al., Communications Earth & Environment, 3 199 (2022), https://doi.org/10.1038/s43247-022-00528-0
  • Improved representation of plant physiology in the JULES-vn5.6 land surface model: photosynthesis, stomatal conductance and thermal acclimation. Oliver, R.J. et al., Geoscientific Model Development, 15 5567-5592 (2022), https://doi.org/10.5194/gmd-15-5567-2022 
  • Amplified warming from physiological responses to carbon dioxide reduces the potential of vegetation for climate change mitigation. He, M., Piao, S., Huntingford, C. et al., Communications Earth & Environment, 3 160 (2022), https://doi.org/10.1038/s43247-022-00489-4
  • Regional and seasonal partitioning of water and temperature controls on global land carbon uptake variability. Wang, K. et al., Nature Communications, 13 3469 (2022), https://doi.org/10.1038/s41467-022-31175-w
  • Thawing permafrost as a nitrogen fertiliser: implications for climate feedbacks. Burke, E., Chadburn, S. and Huntingford, C. Nitrogen, 3, 353-375 (2022), https://doi.org/10.3390/nitrogen3020023 
  • Reduced global fire activity due to human demography slows global warming by enhanced land carbon uptake. Wu, C., Sitch, S., Huntingford, C., Mercado, L.M. et al Proceedings of the National Academy of Sciences of the United States of America, 119, e2101186119 (2022), https://doi.org/10.1073/pnas/2101186119 
  • The 2021 western North America heat wave among the most extreme events ever recorded globally. Thompson, V., Kennedy-Asser, A.T., Vosper, E., Lo, Y.T.E., Huntingford, C. et al Science Advances, 8, eabm6860 (2022), https://doi.org/10.1126/sciadv.abm6860
  • Nitrogen cycle impacts on CO2 fertilisation and climate forcing of land carbon stores. Huntingford, C., Burke, E.J., Jones, C.D., Jeffers, E.S. and Wiltshire, A.J. Environmental Research Letters, 17, 044072 (2022), https://doi.org/10.1088/1748-9326/ac6148 
  • A New Modelling Approach to Adaptation-Mitigation in the Land System. Maire, J., Alexander, P., Anthoni, P., Huntingford, C., Pugh, T. A. M., Rabin, S., Rounsevell, M., & Arneth, A. (2022). In Climate Adaptation Modelling (Springer Climate (SPCL)). p133-140. Springer. https://doi.org/10.1007/978-3-030-86211-4_16
  • Impact of merging of historical and future climate data sets on land carbon cycle projections for South America. Huntingford, C., Sitch, S.A. and O’Sullivan, M., Climate Resilience and Sustainability, 1, e24 (2022), https://doi.org/10.1002/cli2.24

2021 papers

  • Climate change and Lyme disease. Cox, P., Huntingford, C., Sparey, M. and Nuttall, P. (2021). In Climate, ticks and disease (CABI). p18-25. https://doi.org/10.1079/9781789249637.0003
  • Strong direct and indirect influences of climate change on water yield confirmed by the Budyko framework. Yang, H., Xu, H., Huntingford, C., Ciais, P. and Piao, S., Geography and Sustainability, 2, 281-287 (2021), https://doi.org/10.1016/j.geosus.2021.11.001 
  • Constraints on estimating the CO2 fertilization effect emerge. Huntingford, C. and Oliver, R.J., Nature, 600, 224-225 (2021), https://doi.org/10.1038/d41586-021-03560-w (This is a News and Views document)
  • The Montreal Protocol protects the terrestrial carbon sink. Young, P.J., Harper, A.B., Huntingford, C. et al., Nature,  596, 384-388 (2021), https://doi.org/10.1038/s41586-021-03737-3
  • Optimal COVID-19 vaccine sharing between two nations that also have extensive travel exchanges. Huntingford, C., Rawson, T. and Bonsall, M.B., Frontiers in Public Health, 9: 633144 (2021), https://doi.org/10.3389/fpubh.2021.633144
  • Vegetation response to rising CO2 amplifies contrasts in water resources between global wet and dry land areas. Cui, J., Yang, H., Huntingford, C., Kooperman, G.J., Lian, X., He, M. and Piao, S, Geophysical Research Letters, 48, e2021GL094293 (2021), https://doi.org/10.1029/2021GL094293
  • Improvement of modeling plant responses to low soil moisture in JULESvn4.9 and evaluation against flux tower measurements, Harper, A.B. et al., Geoscientific Model Development, 14, 3269-3294 (2021), https://doi.org/10.5194/gmd-14-3269-2021
  • Unusual characteristics of the carbon cycle during the 2015-2016 El Niño. Wang, K. et al., Global Change Biology, (2021), https://doi.org/10.1111/gcb.15669
  • Emergent constraints on climate sensitivities. Williamson, M.S. et al., Reviews of Modern Physics, 93, 025004 (2021), https://doi.org/10.1103/RevModPhys.93.025004
  • Regional variation in the effectiveness of methane-based and land-based climate mitigation options. Hayman, G.D. et al., Earth System Dynamics 12, 513-544 (2021), https://doi.org/10.5194/esd-12-513-2021
  • Overshooting tipping point thresholds in a changing climate. Ritchie, P.D.L., Clarke, J.J., Cox, P.M. and Huntingford, C., Nature 592, 517-523 (2021), https://doi.org/10.1038/s41586-021-03263-2
  • The compost bomb instability in the continuum limit. Clarke, J., Huntingford, C., Ritchie, P. and Cox, P., The European Physical Journal (2021), https://doi.org/10.1140/epjs/s11734-021-00013-3 
  • Historical and future global burned area with changing climate and human demography. Wu, C., Venevsky, S., Sitch, S., Mercado, L.M., Huntingford, C. and Staver, A.C., One Earth 4, 517-530 (2021), https://doi.org/10.1016/j.oneear.2021.03.002
  • Multifaceted characteristics of dryland aridity changes in a warming world. Lian, X., Piao, S., Chen, A., Huntingford, C., et al., Nature Reviews Earth & Environment (2021), https://doi.org/10.1038/s43017-021-00144-0 
  • Seasonal biological carryover dominates northern vegetation growth. Lian, X., Piao, S., Chen, A., Wang, K., Li, X., Buermann, W., Huntingford, C., Peñuelas, J., Xu, H. and Myneni, R.B., Nature Communications, 12, 983 (2021), https://doi.org/10.1038/s41467-021-21223-2
  • Technical note: Low meteorological influence found in 2019 Amazonia fires. Kelley, D.I. et al., Biogeosciences, 18, 787-804 (2021), https://doi.org/10.5194/bg-18-787-2021
  • Method uncertainty is essential for reliable confidence statements of precipitation projections. Uhe, P. et al., Journal of Climate, 34, 1227-1240 (2021), https://doi.org/10.1175/JCLI-D-20-0289.1
  • Converging towards a common representation of large-scale photosynthesis. Huntingford, C. and Oliver, R.J. Global Change Biology , 27, 716-718 (2021), https://doi.org/10.1111/gcb.15398

2020 papers

  • Temporary “Circuit Breaker” Lockdowns could effectively delay a COVID-19 second wave infection peak to early spring. Rawson, T., Huntingford, C. and Bonsall, M.B., Frontiers in Public Health, (2020), https://doi.org/10.3389/fpubh.2020.614945
  • Vegetation forcing modulates global land monsoon and water resources in a CO2-enriched climate. Cui, J., Piao, S., Huntingford, C., Wang, X., Lian, X., Chevuturi, A., Turner, A.G. and Kooperman, G.J. Nature Communications, 11, 5184 (2020), https://doi.org/10.1038/s41467-020-18992-7
  • Robust Ecosystem Demography (RED version 1.0): a parsimonious approach to modelling vegetation dynamics in Earth system models. Argles, A.P.K. et al., Geoscientific Model Development, 13, 4067-4089 (2020), https://doi.org/10.5194/gmd-13-4067-2020
  • CMIP6 climate models imply high committed warming. Huntingford, C., Williamson, M.S. and Nijsse, F.J.M.M., Climatic Change, 1621515-1520 (2020), https://doi.org/10.1007/s10584-020-02849-5
  • How and when to end the COVID-19 lockdown: an optimization approach. Rawson, T., Brewer, T., Veltcheva, D., Huntingford, C. and Bonsall, M.B., Frontiers in Public Health, 8, (2020), https://doi.org/10.3389/fpubh.2020.00262
  • Quantifying the controls on evapotranspiration partitioning in the highest alpine meadow ecosystem. Cui, J. et al., Water Resources Research, 55, (2020), https://doi.org/10.1029/2019WR024815
  • Validation of demographic equilibrium theory against tree-size distributions and biomass density in Amazonia. Moore, J.R. et al., Biogeosciences, 17, 1013-1032 (2020), https://doi.org/10.5194/bg-17-1013-2020
  • Summer soil drying exacerbated by earlier spring greening of northern vegetation. Lian, X. et al., Science Advances, 6, eaax0255 (2020), https://doi.org/10.1126/sciadv.aax0255 

2019 papers

2018 papers

  • A large committed long-term sink of carbon due to vegetation dynamics. Pugh, T.A.M. et al., Earth’s Future, 6 (2018), https://doi.org/10.1029/2018EF000935
  • Changing the retention properties of catchments and their influence on runoff under climate change. Yang, H. et al., Environmental Research Letters, 13, 094019 (2018), https://doi.org/10.1088/1748-9326/aadd32
  • Technical note: A simple theoretical model framework to describe plant stomatal “sluggishness” in response to elevated ozone concentrations. Huntingford, C. et al., Biogeosciences, 15, 5415-5422 (2018), http://doi.org/10.5194/bg-15-5415-2018
  • Equilibrium forest demography explains the distribution of tree sizes across North America. Moore, J.R. et al., Environmental Research Letters, 13, 084019 (2018), http://doi.org/10.1088/1748-9326aad6d1
  • Land-use emissions play a critical role in land-based mitigation for Paris climate targets. Harper, A.B. et al., Nature Communications, 9, 2938 (2018), http://doi.org/10.1038/s41467-018-05340-z
  • Carbon budgets for 1.5 and 2°C targets lowered by natural wetland and permafrost feedbacks. Comyn-Platt, E et al., Nature Geoscience, 11, 568-573 (2018), http://doi.org/10.1038/s41561-018-0174-9 
  • Partitioning global land evapotranspiration using CMIP5 models constrained by observations. Lian, X et al., Nature Climate Change 8, 640-646 (2018), http://doi.org/10.1038/s41558-018-0207-9
  • Increased importance of methane reduction for a 1.5 degree target. Collins, W.J. et al., Environmental Research Letters 13, 054003 (2018), https://doi.org/10.1088/1748-9326/aab89c
  • Large sensitivity in land carbon storage due to geographical and temporal variation in the thermal response of photosynthetic capacity. Mercado, L.M. et al., New Phytologist 218, 1462-1477 (2018), http://doi.org/10.1111/nph.15100
  • CO2 loss by permafrost thawing implies additional emissions reductions to limit warming to 1.5 or 2oC. Burke, E.J. et al., Environmental Research Letters 13, Art 024024 (2018), http://doi.org/10.1088/1748-9326/aaa138
  • Brief communication: Drought likelihood for East Africa. Yang, H. and Huntingford, C., Natural Hazards and Earth System Sciences 18, 491-497 (2018), http://doi.org/10.5194/nhess-18-491-2018
  • Climate pattern-scaling set for an ensemble of 22 GCMs – adding uncertainty to the IMOGEN version 2.0 impact system. Zelazowski, P. et al., Geoscientific Model Development 11, 541-560 (2018), https://doi.org/10.5194/gmd-11-541-2018
  • Emergent constraint on equilibrium climate sensitivity from global temperature variability. Cox, P.M. et al., Nature, 553, 319-322 (2018), https://doi.org/10.1038/nature25450

2017 papers

2016 papers

2015 papers

2014 papers

  • Increasing the detectability of external influence on precipitation by correcting feature location in GCMs. Levy, A.A.L, Jenkinson, M., Ingram, W., Lambert, F.H., Huntingford, C. and Allen, M. J Geophysical Research – Atmospheres, 119, p12466-12478, (2014). http://dx.doi.org/10.1002/2014JD022358
  • Detection of solar dimming and brightening effects on Northern Hemisphere river flow. Gedney, N., Huntingford C., Weedon, G.P., Bellouin, N., Boucher, O. and Cox, P.M. Nature Geoscience, 7, p796-800, (2014). http://dx.doi.org/10.1038/NGEO2263
  • Evidence for a weakening relationship between interannual temperature variability and northern latitude vegetation activity. Piao, S.L. et al. Nature Communications, 5, (2014). http://dx.doi.org/10.1038/ncomms6018
  • Potential influences on the United Kingdom’s floods of winter 2013/14. Huntingford, C. et al. Nature Climate Change, 4, p769-777 (2014). http://dx.doi.org/10.1038/NCLIMATE2314
  • Comprehensive ecosystem model-data synthesis using multiple data sets at two temperate forest free-air CO2 enrichment experiments: Model performance at ambient CO2 concentration. Walker, A.P. et al., J Geophysical Research-Biogeosciences, 119, p937-964 (2014). http://dx.doi.org/10.1002/2013JG002553 
  • Sensitivity of climate change detection and attribution to the characteriszation of internal climate variability. Imbers, J., Lopez, A., Huntingford, C. and Allen, M. J of Climate, 27, p3477-3491 (2014). http://dx.doi.org/10.1175/JCLI-D-12-00622.1
  • Comparison of the HadGEM2 climate-chemistry model against in situ and SCIAMACHY atmospheric methane data. Hayman, G.D. et al,. Atmospheric Chemistry and Physics, 14, p13257-13280 (2014). http://dx.doi.org/10.5194/acp-14-13257-2014
  • Carbon cycle uncertainty in the Alaskan Arctic. Fisher, J.B. et al,. Biogeosciences, 11, p4271-4288 (2014). http://dx.doi.org/10.5194/bg-11-4271-2014
  • Complexity amd determining dangerous levels of climate impacts. Huntingford, C. Environmental Research Latters, 9, Art: 011001 (2014). http://dx.doi.org/10.1088/1748-9326/9/1/011001

2013 papers

  • No increase in global temperature variability despite changing regional patterns. Chris Huntingford, Philip D Jones, Valerie N Livinia, Timothy M Lenton, Peter M Cox. Nature, 500, p327-+ (2013). http://dx.doi.org/10.1038/nature12310
  • Climate projection: Refining global warming projections. Chris Huntingford. Nature Climate Change, 8, p704-705 (2013). http://dx.doi.org/doi:10.1038/nclimate1964
  • Simulated resilience of tropical rainforests to CO2-induced climate change. Chris Huntingford et al, Nature Geoscience 6, p268-273. (2013). http://dx.doi.org/doi:10.1038/NGEO1741
  • Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Peter M Cox, David Pearson, Ben B Booth, Pierre Friedlingstein, Chris Huntingford, Chris D Jones & Catherine M Luke. Nature 494, p341-344 (2013). http://dx.doi.org/doi:10.1038/nature11882
  • The role of short-lived climate pollutants in meeting temperature goals. Bowerman, Niel H. A.; Frame, David J.; Huntingford, Chris; et al. Nature Climate Change 12, p1021-1024, (2013). http://dx.doi.org/10.1038/NCLIMATE2034
  • Earth Science: The timing of climate change. Huntingford. C., Mercado, L. and Post, E. Nature, 502, p174-175, (2013). http://dx.doi.org/10.1038/502174a
  • African tropical rainforest net carbon dioxide fluxes in the twentieth century. Fisher, J.B. et al. Phil Trans Roy Soc B, 368 (2013). http://dx.doi.org/10.1098/rstb.2012.0376
  • Explaining extreme events of 2012 from a climate perspective. Peterson, T.C. et al. Bulletin of the American Meteorological Society, 94, pS1-S74 (2013). http://dx.doi.org/10.1175/BAMS-D-13-00085.1
  • Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Piao et al., Global Change Biology, 19, p2117-2132 (2013). http://dx.doi.org/10.1111/gcb.12187 
  • Testing the robustness of the anthropogenic climate change detection statements using different empirical models. Imbers, J., Lopez, A., Huntingford, C. and Allen, M.R. J Geophysical Research-Atmospheres, 118, p3192-3199 (2013). http://dx.doi.org/10.1002/jgrd.50296
  • Can correcting feature location in simulated mean climate improve agreement on projected changes? Levy, A.A.L et al. Geophysical Research Letters, 40, p354-358 (2013). http://dx.doi.org/10.1029/2012/GL053964
  • Allowable carbon emissions for medium-to-high mitigation scenarios. Tachiiri et al. Tellus Series B – Chemical and Physical Meteorology, 65, (2013). http://dx.doi.org/10.3402/tellusb.v65i0.20586
  • The global carbon budget 1959-2011. LeQuere et al. Earth System Science Data, 5, p165-185 (2013). http://dx.doi.org/10.5194/essd-5-165-2013

2012 papers

  • Equivalence of greenhouse-gas emissions for peak temperature limits. Stephen M Smith, Jason A Lowe, Niel H A Bowerman, Laila K Gohar, Chris Huntingford & Myles R Allen. Nature Climate Change 2 p535-538 (2012). http://dx.doi.org/doi:10.1038/NCLIMATE1496
  • The link between a global 2°C warming threshold and emissions in years 2020, 2050 and beyond. Chris Huntingford, Jason A. Lowe, Laila K. Gohar, Niel H.A. Bowerman, Myles R. Allen, Sarah C.B. Raper and Stephen M. Smith. Environ. Res. Lett. 7 (2012) 014039 (8pp). http://dx.doi.org/doi:10.1088/1748-9326/7/1/014039.
  • High sensitivity of future global warming to land carbon cycle processes. Ben Booth, Chris D Jones, Mat Collins, Ian J Totterdell, Peter M Cox, Stephen Sitch, Chris Huntingford, Richard A Betts, Glen R Harris and Jon Lloyd. Environ. Res Lett. 7 (2012) 024002 (8pp). http://dx.doi.org/doi:10.1088/1748-9326/7/2/024002.
  • Model complexity versus ensemble size: allocating resources for climate prediction. Christopher A. T. Ferro, Tim E. Jupp, F. Hugo Lambert, Chris Huntingford and Peter M. Cox. Phil. Trans. R. Soc. A 370, p1087-1099 (2012). http://dx.doi.org/doi:10.1098/rsta.2011.0307

2011 papers

  • The Joint UK Land Environment Simulator (JULES), model description – Part 2: Carbon fluxes and vegetation dynamics. D.B. Clark, L.M. Mercado, S.Sitch, C.D. Jones, N.Gedney, M.J. Best, M. Pryor, G.G. Rooney, R.L.H. Essery, E. Blyth, O. Boucher, R.J. Harding, C. Huntingford, and P.M. Cox. Geosci. Model Dev., 4, p701–722 (2011). http://dx.doi.org/10.5194/gmd-4-701-2011
  • Highly contrasting effects of different climate forcing agents on terrestrial ecosystem services.
  • C. Huntingford, P. M. Cox, L. M. Mercado, S. Sitch, N. Bellouin, O. Boucher and N. Gedney. Phil. Trans. R. Soc. A 369, 2026-2037 (2011). http://dx.doi.org/10.1098/rsta.2010.0314.
  • Cumulative carbon emissions, emissions floors and short-term rates of warming: implications for policy. Bowerman, N.H.A., Frame, D.J., Huntingford, C., Lowe, J.A. and Allen, M.R. Phil. Trans. R. Soc. A. 369, p45-66 (2010). http://dx.doi.org/10.1098/rsta.2010.0288
  • Trends in the sources and sinks of carbon dioxide. Le Quere, C., Raupach, M.R., Canadell, J.G. et al. Nature Geoscience, 2, p831-836 (Dec 2009) http://dx.doi.org/10.1038/ngeo689 
  • Quantifying environmental drivers of future tropical forest extent. Good, Peter, Jones, Chris, Lowe, Jason, Betts, Richard, Booth, Ben, Huntingford, Chris. Journal of Climate, 24, Issue , p1337 -1349 (2011). http://dx.doi.org/10.1175/2010JCLI3865.1
  • Changes in the potential distribution of humid tropical forests. Zelazowski, P., Mahli, Y., Huntingford, C., Sitch, S. and Fisher, J.B. Phil. Trans. of the R. Soc. A. 369, p137-160 (2011). http://dx.doi.org/10.1098/rsta.2010.0238

2010 papers

  • Multiple mechanisms of Amazonian forest biomass losses in three dynamic global vegetation models under climate change. Galbraith, D., Levy, P.E., Sitch, S., Huntingford, C., Cox, P., Williams, M. and Meir, P. New Phytologist, 187, p647-665 (2010). http://dx.doi.org/10.1111/j.1469-8137.2010.03350.x
  • IMOGEN: an intermediate complexity model to evaluate terrestrial impacts of a changing climate. C. Huntingford, B. B. B. Booth, S. Sitch, N. Gedney, J. A. Lowe, S. K. Liddicoat, L. M. Mercado, M. J. Best, G. P.Weedon, R. A. Fisher, M. R. Lomas, P. Good, P. Zelazowski, A. C. Everitt, A. C. Spessa, and C. D. Jones. Geoscientific Model Development. 3, p679-687 (2010). http://dx.doi.org/10.5194/gmd-3-679-2010
  • Assessing uncertainties in a second-generation dynamic vegetation model caused by ecological scale limitations. Fisher, R., McDowell, N., Purves, D., Moorcroft, P., Sitch, S., Cox, P., Huntingford, C., Meir, P. and Woodward, F.I. New Phytologist, 187, 666-681 (2010). http://dx.doi.org/10.1111/j.1469-8137/2010.03340.x
  • Carbon cost of plant nitrogen acquisition: A mechanistic, globally applicable model of plant nitrogen uptake, retranslocation, and fixation. Fisher, J.B., Sitch, S., Malhi, Y., Fisher, R.A., Huntingford, C. and Tan, S.Y. Global Biogeochemical Cycles, 24, GB1014, (2010). http://dx.doi.org/10.1029/2009GB003621
  • Hughes, J.K., Lloyd, A.J., Huntingford, C. et al. The impact of extensive planting of Miscanthus as an energy crop on future CO2 atmospheric concentrations. Source: Global Change Biology Bioenergy, 2, p79-88 (2010). http://dx.doi.org/10.1111/j.1757-1707.2010.01042.x

2009 papers

  • Warming caused by cumulative carbon emissions towards the trillionth tonne. Allen, M. R., Frame, D. J, Huntingford, C., Jones, C.D., Lowe, J.A., Meinshausen, M. and Meinschausen, N. Nature 458, p1163-1166 (2009) http://dx.doi.org/10.1038/nature08019
  • Contributions of carbon cycle uncertainty to future climate projection spread. Huntingford, C.., Lowe, J.A., Booth, B.B.B. et al. Tellus Series B – Chemical and Physical Meteorology, 61, p355-360 (2009). http://dx.doi.org/0.1111/j.1600-0889.2009.00414.x.
  • How difficult is it to recover from dangerous levels of global warming? Lowe, J.A., Huntingford, C., Raper, S.C.B., Jones, C.D., Liddicoat, S.K., Gohar, L.K. Environ. Res. Lett. 4 014012 (2009). http://dx.doi.org/10.1088/1748-9326/4/1/014012.
  • Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Malhi, Y., Aragao L.E.O.C., Galbraith, D., Huntingford, C., Fisher, R., Zelazowski, P., Sitch, S., McSweeney, C. and Meir, P. Proceedings of the National Academy of Sciences of the United States of America, 106, (2009). http://dx.doi.org/10.1073/pnas.0804619106
  • Impact of changes in diffuse radiation on the global land carbon sink. Mercado, L. M., Bellouin, N., Sitch, S. et al. Nature 458 (2009). http://dx.doi.org/10.1038/nature07949

2008 papers

  • What do recent advances in quantifying climate and carbon cycle uncertainties mean for climate policy? House, J.I., Huntingford, C., Knorr, W. et al. Environmental Research Letters, 3, Art. 044002 (2008). http://www.iop.org/EJ/abstract/1748-9326/3/4/044002
  • Observed climate change constrains the likelihood of extreme future global warming. Stott, P.A., Huntingford, C., Jones, C.D. et al. Tellus Series B-Chemical and Physical Meteorology, 60, p76-81 (2008). http://dx/doi.org/10.1111/j.1600-0889.2007.00329.x.
  • Amazon Basin climate under global warming: the role of the sea surface temperature. Harris, P.P., Huntingford, C., Cox, P.M. Phil. Trans. of the R.l Soc. B-Biological Sciences, 363, p1753-1759 (2008). http://dx.doi.org/10.1098/rstb.2007.0037
  • Towards quantifying uncertainty in predictions of Amazon “dieback”. Huntingford , C., Fisher, R.A., Mercado, L. et al. Phil. Trans. of the R. Soc. B-Biological Sciences, Volume 363, Issue 1498, Pages 1857-1864 (2008). http://dx.doi.org/10.1098/rstb.2007.0028
  • Increasing risk of Amazonian drought due to decreasing aerosol pollution. Cox, P.M., Harris, P.P., Huntingford, C., et al. Nature, 453, p212-U7 (2008). http://dx.doi.org/10.1038/nature06960
  • Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Sitch, S., Huntingford, C., Gedney, N. et al. Global Change Biology, 14, p2015-2039 (2008). http://dx.doi.org/10.1111/j.1365-2486.2008.01626.x
  • Climate change: Seeking balance in media reports. Huntingford, C., Fowler, D. Environmental Research Letters, 3, (2008). http://dx.doi.org/10.1088/1748-9326/3/2/021001

2007 papers

  • “Overshoot” scenarios and climate change.
  • Huntingford, C., Lowe, J. Science, 316, p829-829, (2007). http://dx.doi.org/10.1126/science.316.5826.829b
  • Climate-carbon cycle feedbacks under stabilization: uncertainty and observational constraints. Jones, C.D., Cox, P.M., Huntingford, C. Tellus Series B-Chemical and Physical Meteorology, 58, p603-613, (Nov 2006). http://dx.doi.org/10.1111/j.1600-0889.2006.00215.x.
  • Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Betts, R.A., Boucher, O., Collins, M. et al. Nature, 448, p1037-U5 (2007). http://dx.doi.org/10.1038/nature06045
  • On the robustness of changes in extreme precipitation over Europe from two high resolution climate change simulations. Buonomo, E., Jones, R., Huntingford, C. et al. Quarterly Journal of the Royal Meteorological Society, 133, p65-81 (Jan 2007). http://dx.doi.org/10.1002/qj.13
  • Improving the representation of radiation interception and photosynthesis for climate model applications. Mercado, L.M., Huntingford, C., Gash, J.H.C. et al. Tellus Series B-Chemical and Physical Meteorological, 59, p553-565 (2007). http://dx.doi.org/10.1111/j.1600-0889.2007.00256.x.
  • Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Sitch, S., Cox, P.M., Collins, W.J. et al. Nature, 448, p791-U4 (2007). http://dx.doi.org/10.1038/nature06059
  • Impact of climate change on health: what is required of climate modellers? Huntingford, C., Hemming, D., Gash, J.H.C. et al. Trans. of the Roy. Soc. of Tropical Medicine and Hygiene, 101, p97-103 (Feb 2007). doi: 10.1016/j.trstmh.2006.11.001

2006 papers

  • Incorporating model uncertainty into attribution of observed temperature change. Huntingford, C., Stott, P.A., Allen, M.R. et al. Geophysical Research Letters, 33, (2006). http://dx.doi.org/10.1029/2005GL024831
  • Detection of a direct carbon dioxide effect in continental river runoff records. Gedney, N., Cox, P.M., Betts, R.A. et al. Nature, 439, 835-838 (2006). http://dx.doi.org/10.1038/nature04504
  • Continental runoff – A quality-controlled global runoff data set – Reply. Gedney, N., Cox, P.M., Betts, R.A. et al. Nature, 444, pE14-E15 (2006). http://dx.doi.org/10.1038/nature05481
  • Evaluation of the rainfall component of a weather generator for climate impact studies. Elshamy, M.E., Wheater, H.S., Gedney, N. et al. Journal of Hydrology, 326, p1-24 (Jul 2006). http://dx.doi.org/10.1016/j.jhydrol.2005.09.017
  • Climate change and hydrology: next steps for climate models. Huntingford, C., Gash, J., Giacomello, A.M. Hydrological Processes, 20, p2085-2087 (Jun 2006). http://dx.doi.org/10.1002/hyp.6208

2005 papers

  • Attribution studies of observed land precipitation changes with nine coupled models. Lambert, F.H., Gillett, N.P., Stone, D.A. et al. Geophysical Research Letters, 32, (2005). http://dx.doi.org/10.1029/2005GL023654
  • Aspects of climate change prediction relevant to crop productivity. Huntingford, C., Lambert, F.H., Gash, J.H.C. et al. Phil. Trans. of the Roy. Soc. B-Biological Sciences, 360, p1999-2009 (2005). http://dx.doi.org/10.1098/rstb.2005.1748
  • Climate equity for all. Author(s): Huntingford, C., Gash, J. Science, 309, p1789-1789 (2005). http://dx.doi.org/10.1126/science.1115898
  • Combining a regional climate model with a phytoplankton community model to predict future changes in phytoplankton in lakes. Elliott, J.A., Thackeray, S.J., Huntingford, C. et al. Freshwater Biology, 50, p1404-1411 (2005). http://dx.doi.org/10.1111/j.1365-2427.2005.01409.x
  • Modelling long-term transpiration measurements from grassland in southern England. Harding, R.J., Huntingford, C., Cox, P.M. Agricultural and Forest Meteorology, 100, p309-322 (2005). http://dx.doi.org/10.1016/S0168-1923(99)00152-5

2004 papers

  • Preface. Gash, J.H.C., Marengo, J.A., Huntingford, C. Theoretical and Applied Climatology, 78, p3-3 (2004). http://dx.doi.org/10.1007/s00704-004-0040-0
  • Calibration of a land-surface model using data from primary forest sites in Amazonia. Harris, P.P., Huntingford, C., Gash, J.H.C. et al. Theoretical and Applied Climatology, 78, p27-45 (2004). http://dx.doi.org/10.1007/s00704-004-0042-y
  • Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Cox, P.M., Betts, R.A., Collins, M. et al. Theoretical and Applied Climatology, 78, p137-156, (2004). http://dx.doi.org/10.1007/s00704-004-0049-4
  • The role of ecosystem-atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming. Betts, R.A, COX, P.M., Collins, M. et al. Theoretical and Applied Climatology, 78, 157-175 (2004). http://dx.doi.org/10.1007/s00704-004-0050-y
  • Using a GCM analogue model to investigate the potential for Amazonian forest dieback. Huntingford, C., Harris, P.P., Gedney, N., et al. Theoretical and Applied Climatology, 78, p177-185 (2004). http://dx.doi.org/10.1007/s00704-004-0051-x
  • Amazonian climate: results and future research. Gash, J.H.C., Huntingford, C., Marengo, J.A. et al. Theoretical and Applied Climatology, 78, p187-193 (2004).
  • http://dx.doi.org/10.1007/s00704-004-0052-9
  • Effect of soil moisture on canopy conductance of Amazonian rainforest. Harris, P.P., Huntingford, C., Cox, P.M. et al. Agricultural and Forest Meteorology, 122, 215-227 (2004). http://dx.doi.org/10.1016/j.agrformet.2003.09.006
  • Climate feedback from wetland methane emissions. Gedney, N., Cox, P.M., Huntingford, C. Geophysical Research Letters, 31, (2004). http://dx.doi.org/10.1029/2004GL020919

2003 papers

  • Regional climate-model predictions of extreme rainfall for a changing climate. Huntingford, C., Jones, R.G., Prudhomme, C. et al. Quarterly Journal of the Royal Meteorological Society, 129, 1607-1621 (2003). http://dx.doi.org/10.1256/qj.02.97
  • Extent of partial ice cover due to carbon cycle feedback in a zonal energy balance model. Huntingford, C., Hargreaves, J.C., Lenton, T.M. et al. Hydrology and Earth System Sciences, 7, 213-219, (2003).
  • Global terrestrial carbon storage and uncertainties in its temperature sensitivity examined with a simple model. Lenton, T.M., Huntingford, C. Global Change Biology, 9, 1333-1352 (2003). http://dx.doi.org/10.1046/j.1365-2486.2003.00674.x
  • Uncertainty in climate-carbon-cycle projections associated with the sensitivity of soil respiration to temperature. Jones, C.D., Cox, P., Huntingford, C. Tellus Series B-Chemical and Physical Meteorology, 55, p642-648 (2003).
  • Improved description of soil hydraulic and thermal properties of arctic peatland for use in a GCM. Hall, R.L., Huntingford, C., Harding, R.J. et al. Hydrological Processes, 17, p2611-2628 (2003). http://dx.doi.org/10.1002/hyp.1265

2000 papers

  • An analogue model to derive additional climate change scenarios from existing GCM simulations. Huntingford, C., Cox, P.M. Climate Dynamics, 16, p575-586 (2000). http://dx.doi.org/10.1007/s003820000067
  • Contrasting responses of a simple terrestrial ecosystem model to global change. Huntingford, C., Cox, P.M, Lenton, T.M. Ecological Modelling, 134, p41-58 (2000). http://dx.doi.org/10.1016/S0304-3800(00)00330-6
  • Dual versus single source models for estimating surface temperature of African savannah. Huntingford, C., Verhoef, A., Stewart, J. Hydrology and Earth System Sciences, 4, Issue 1, p185-191 (Mar 2000).

1998 papers

  • A canopy conductance and photosynthesis model for use in a GCM land surface scheme. Cox, P.M., Huntingford, C., Harding, R.J. Journal of Hydrology, 213, 79-94 (1998). http://dx.doi.org/10.1016/S0022-1694(98)00203-0
  • The behaviour of a mixed-layer model of the convective boundary layer coupled to a big leaf model of surface energy partitioning. Huntingford, C., Monteith, J.L. Source: Boundary Layer Meteorology, 88, 87-101 (1998). http://dx.doi.org/10.1023/A:1001110819090
  • The effect of orography on evaporation. Huntingford, C., Blyth, E.M., Wood, N. et al. Boundary Layer Meteorology, 86, 487-504 (1998). http://dx.doi.org/10.1023/A:1000795206459
  • An argument for the use of two-layer SVAT schemes to simulate terrestrial carbon dioxide fluxes. Huntingford, C., Hall, R.L., Verhoef, A. Hydrology and Earth System Sciences, 2, p299-302 (1998).

1997 papers

  • Use of statistical and neural network techniques to detect how stomatal conductance responds to changes in the local environment. Huntingford, C., Cox, P.M. Ecological Modelling, 97, p217-246 (1997). http://dx.doi.org/10.1016/S0304-3800(96)01905-9

1996 papers

  • A note on the similarity groups of the Penman-Monteith Big Leaf Model. Huntingford, C. Boundary Layer Meteorology, 79, p307-312 (1996). http://dx.doi.org/10.1007/BF00119444
  • An intercomparison of single and dual-source vegetation-atmosphere transfer models applied to transpiration from Sahelian savannah (Correction Volume 74, p397, 1995). Huntingford, C., Allen, S.J., Harding, R.J. Boundary Layer Meteorology, 77, p101-101 (1996).

1995 papers

  • An intercomparison of single and dual-source vegetation-atmosphere transfer models applied to transpiration from Sahelian savanna. Huntingford, C., Allen, S.J., Harding, R.J. Boundary-Layer Meteorology, 74, p397-418 (1995). http://dx.doi.org/10.1007/BF00712380
  • Non-Dimensionalisation of the Penman-Monteith model. Huntingford, C. Journal of Hydrology, 170, p215-232 (1995). http://dx.doi.org/10.1016/002-1694(94)02673-Y
  • An exact solution to the one-phase zero-surface-tension Hele-Shaw free-boundary problem. Huntingford, C. Computers & Mathematics with Applications, 29, p45-50 (1995). http://dx.doi.org/10.1016/0898-1221(95)00044-Y

1994 papers

  • A model for nonsmooth free boundaries in Hele-Shaw flows. Hohlov, Y.E., Howison, S.D., Huntingford, C. Et al. Quarterly Journal of Mechanics and Applied Mathematics, 47, p107-128 (1994). http://dx.doi.org/10.1093/qjmam/47.1.107

All views on this site are my own and not necessarily those of my employer, the UKCEH.